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Major Goals:  Microbial communities are known to display complex, collective behaviors. However, the underlying 
principles as to how these behaviors arise despite uncertainty in molecular and cellular components of the system 
remains unclear. Consequently, we examine the robustness of collective behaviors in microbial communities, using 
pattern formation of wild coliform bacteria as a model system. Many coliform bacteria naturally form complex 
dynamic patterns that arise from the combination of chemotaxis, nutrient degradation, and the exchange of amino 
acids between cells. Using both quantitative experimental methods and several theoretical frameworks, we dissect 
bacterial pattern formation at multiple scales, from the molecules to individual cells to self-organizing populations. 
By comparing pattern formation from multiple wild isolates, we attempt to identify universal principles that govern 
robust, collective behaviors in biological systems.

Towards this end, we adopt a multiscale approach combining experimental and theoretical approaches for the 
following research goals:  

(1) We develop a mathematical framework for characterizing and classifying the irregularity in microbial pattern 
formation and validate it against experimental measurements. 

(2) We determine the variability of protein copy numbers in living cells and develop a computational framework for 
measuring and predicting how noise in cellular components affects the overall system-level behavior. 

(3) In measurements of individual cells, we analyze behaviors such as chemotactic response, signaling potential, 
and swimming speed to predict how single-cell heterogeneity contributes to complex, collective behavior. 

(4) We develop a mathematical and experimental framework for identifying the single-cell functional states and 
quantify the cell-to-cell communication that lead to complex pattern formation. We define an information theoretic 
inspired framework for measuring how cell processing and cell-cell communication contribute to the degree of 
emergence, self-organization and robustness. 

(5) We propose a combined mathematical and experimental framework for investigating the robustness of pattern 
formation when two populations of pattern forming bacteria coexist in the same space. 

This project combines experimental tools including the tools of synthetic biology, fluorescence and brightfield 
microscopy at multiple length and time scales, and microfluidic functional assays of single-cell behavior with 
theoretical tools including agent-based models, non-equilibrium master equations, nonparametric statistics, 
systems of coupled partial differential equations, and novel analytical methods to predict and control the behavior of 
collective systems.

In this performance period, we did not modify or made changes in the approach or methods.

Accomplishments:  In this performance period (August 1st, 2017 – January 15th, 2018), the major activities and 
specific objectives accomplished are as follows:
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1. We developed a mathematical framework to characterize the emergence and self-organization of microbial 
communities from sparse spatio-temporal time-lapse imaging data. From microbial communities to cancer cells, 
many such complex collectives are said to possess emergent and self-organizing behavior. However, we lack a 
universal and rigorous mathematical framework to quantify the degree of emergence and self-organization of 
biological swarms especially when considering that only sparse spatiotemporal macroscopic data is available due 
to technological and scientific challenges. To overcome these challenges (e.g., spatiotemporal chemoattractant 
concentrations, cell swimming trajectories), we propose a multi-fractal inspired framework for quantifying the 
degree of emergence and self-organization from time-lapse imaging with low resolution in time (several minutes 
between two images) and space (tens of micrometers). Emergence describes the rate of change of the probability 
distribution characterizing the aggregation process and can be used to detect if the emergent phenomena moves 
the community into a state of low energy, the case of Enterobacter cloacae, or maximum energy. We also establish 
mathematical connections between the proposed emergency metric and the free energy concept in statistical 
physics. The self-organization metric we define shows the degree of similarity (order) between different regions of 
the environment and the synchronization of the location of new aggregates with the previous ones. More precisely, 
as the experiment advances, the new Enterobacter cloacae aggregates align their location with one of the old 
aggregates across all the regions of the petri dish suggesting an increase in self-organization. 

The benefits of this pioneering quantification strategies of emergence and self-organization consist of being able to 
discern when complex collectives (collective systems) display an intelligent behavior, categorize their swarming 
behavior with reference systems, compare and contrast them for the purpose of selecting the optimal swarms or for 
optimizing intelligent autonomous swarms.



2. We isolated and characterized 11 wild strains of bacteria capable of forming complex, dynamic patterns. For 
each strain, time-lapse revealed emergent patterns in the form of swarm rings and spots that appear due to the 
coordinated movement of large populations of cells. We characterized the differences in these strains through 
whole genome sequencing and measurements of motility and chemotaxis at the single-cell level. Genome 
sequencing revealed little variation in the presence and absence of the approximately 50 genes associated with 
microbial pattern formation, despite striking differences in the emergent patterns formed by each strain. Analysis of 
the single-cell swimming trajectories revealed heterogeneity in motility characteristics, including the distribution of 
swimming speeds, tumbling frequencies, and turning angle preferences. Surprisingly no one single-cell 
characteristic was correlated with variability in emergent properties such as the velocity of the swarm ring or spot 
distributions and sizes. These results indicate that the emergent properties of the system are not strongly 
determined by a single characteristic of individual agents in the system, but instead many parameters of individual 
agents collectively contribute to variability observed in population-level collective behavior. We have begun to 
develop modeling approaches to further examine the interplay between single-cell motility and chemotactic 
behavior and macroscale collective motion.



3. Interfacing complex collective biological systems with cyber platforms and engineering their dynamics and 
behavior is an open grand challenge. One such complex collective systems is represented by human brain for 
which developing brain machine interfaces will allow to harvest information from the (physical) brain through 
sensing mechanisms, extract information about the underlying processes, and decide/actuate accordingly to guide 
and control complex engineered systems such as swarms of aerial and ground vehicles. Nonetheless, the brain 
interfaces are still in their infancy, but reaching to their maturity quickly as several initiatives are released to push 
forward their development (e.g., NeuraLink by Elon Musk and ‘typing-bybrain’ by Facebook). State-of-the-art EEG-
based non-invasive brain interfaces entail a highly skilled neuro-functional approach and evidence-based a priori 
knowledge about specific signal features and their interpretation from a neuro-physiological point of view. By 
building on mathematical concepts developed in this project, we propose new models that equip us with a fractal 
dynamical characterization of the brain processes. The model parameters can be seen as explainable from a 
system’s perspective and used for classification using machine learning algorithms and/or actuation laws obtained 
via control system’s theory. We evaluated our approach on real EEG-datasets to assess and validate the proposed 
methodology. The classification accuracies are high even with few training samples.
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Training Opportunities:  This grant supported the training and professional development of the following students:



1. One graduate student, Valeriu Balaban from PI Bogdan’s group working on developing mathematical 
approaches and codes, testing the proposed mathematical and algorithmic tools on synthetic and experimental 
case studies in collaboration with PI Boedicker’s group, and summarizing our research results in a technical report 
and submitted manuscript. Valeriu Balaban has learned not only basic concepts of computer vision for processing 
and preparing the time lapse imaging data of microbial communities for the subsequent mathematical analysis, but 
also gained a solid background in fractal theory, statistical physics, information theory, nonlinear dynamics, and 
statistical machine learning. Working in close collaboration with PI Boedicker’s group also offered unique 
opportunities for learning not only theoretical concepts related with synthetic and system biology, but also to test his 
background thanks to this project. Valeriu Balaban was in part supported by the USC fellowship.



2. Another graduate student, Xiaokan Guo from PI Boedicker’s group was supported by this grant. As part of this 
project he developed new research skills to experimentally measure the chemotactic behavior and motility of 
individual bacterial cells. These experiments also enabled him to sharpen his image analysis skills, as he adapted 
and developed image analysis algorithms to extract single-cell parameters from movies of cell motility. He has also 
benefitted from interactions with the Bogdan group, introducing him to several new analytical tools and new 
perspectives in biophysic.



3. Another graduate student, Gaurav Gupta from PI Bogdan’s group contributed to our project research 
discussions, developed numerous mathematical derivations in order to determine the right mathematical 
expressions for quantifying the degree of emergence and self-organization in microbial communities, and extended 
a number of mathematical ideas into new models for characterizing, modeling and analyzing the dynamics of 
complex collective biological systems such as the brain-in-action. Thanks to this unique project, Gaurav Gupta has 
learned concepts from statistical physics (free energy, entropy), fractal theory, and fractional calculus and was able 
to make a number of novel contributions to the field of system identification and machine learning under unknown 
unknowns. Gaurav Gupta was supported by this grant and by DARPA Young Faculty Award of PI Bogdan. The 
mathematical approaches and algorithms we developed in this project will be applied, tested and evaluated in a 
number of DoD problems such as the viral prediction and gene expression dynamics modeling in the DeepPurple 
biochronicity program.   



4. This grant also has supported an undergraduate student, now a lab technician, Sean Lim. Although his salary 
was not directly paid from this award, funds were used for experimental supplies. He worked closely with both the 
Bogdan group and Xiaokan Guo. As part of this project he has learned many new laboratory skills, including single-
cell characterization, microscopy, and gene sequencing. He will be attending medical school in the fall, and this 
experience has given him new perspectives on biophysics, experimental research, and emergent properties of 
biological systems.



PIs Bogdan and Boedicker interacted with the above mentioned students through one-on-one meetings as well as 
bi-weekly project meetings where we discussed the challenges we faced, proposed solutions and guidelines and 
planned our research. We have maintained a Google doc and an overleaf account to summarize our research 
progress and worked collaboratively on one submitted manuscript on quantifying the emergence and self-
organization of microbial communities. We are currently planning our research activity to summarize our new 
research results and plan collaborative submissions in Spring 2018.
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Results Dissemination:  During August 1st, 2017 – January 15th, 2018, the research results and 
accomplishments in this grant have been disseminated as follows:



1. PI Bogdan was invited and gave a Seminar Lecture entitled “Analytical Tools for Cyber-Physical Systems: 
Lessons Learned from Complex (Biological) Systems” in the Decision and Control Laboratory (DCL) at Georgia 
Tech, on November 10th, 2017. 



2. The research accomplishments on mining complex dynamics of collective biological systems such as the human 
brain were summarizing in a manuscript that was accepted and will appear in the Proceedings of the International 
Conference on Cyber-Physical Systems (ICCPS) part of the CPS Week in April 2018.



3. PI Boedicker gave an invited talk at USC as part of the Women in Science and Engineering visiting day on the 
Biophysics of Microbial Communities.



We summarize below the citations of accepted papers, where the above mentioned research accomplishments 
were described (we only summarize the new publications since last submitted report):



G. Gupta, S. Pequito, and P. Bogdan, “Re-thinking EEG-based non-invasive brain interfaces - modeling and 
analysis” accepted to appear in the Proceedings of the International Conference on Cyber-Physical Systems 
(ICCPS), CPS Week, Porto, Portugal, April 2018.



Valeriu Balaban, Sean Lim, Gaurav Gupta, James Boedicker, and Paul Bogdan, “Emergence and self-organization 
of Enterobacter cloacae microbial communities”, submitted.



The PDF files of the publications are attached at the end of this report or will be made available as soon as we 
finalize the camera ready versions.

Honors and Awards:  PI Bogdan has been awarded the 2017 Defense Advanced Research Projects Agency 
(DARPA) Young Faculty Award for research activities that spur from this project and in particular for developing 
mathematical models, analysis and control algorithms for time varying complex networks. The research results 
have been significantly enriched by the interactions with the DARPA researchers and program officers as their 
feedback and research questions during the DARPA review meetings and hackthons made us think and come up 
with new solutions that could open new fields in observability of fractal processes or quantification of emergence, 
self-organization and complexity not only in biology but also in social and economic / financial sciences. Unique to 
our research project was the close scientific supervision and interaction with our DARPA program officers that led 
to a new algorithm for viral prediction from the DARPA biochronicity program.

Protocol Activity Status: 

Technology Transfer:  We did not have any technology transfer during this reporting period.
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In this section, we briefly summarize our research accomplishments during the August 
2017 to January 2018 period: 
A) Many complex biological systems including the human brain, biological swarms, gene 
regulatory networks or protein-protein interaction networks, display complex 
interdependent non-stationary and long-range memory dynamics. While the mathematics 
of such time varying complex networks currently ignores the fractal and long-range 
dependence characteristics, what makes their analysis even harder is that we often have 
available only partial observations either in space (in terms of number of state variables 
that we can measure or know about) and time (only few measurements can be obtained 
due to time, technological and economic costs). Specifically, complex networks such as 
the brain, whose nodes will dynamically evolve according to a fractal order dynamical 
model, are often observed locally. Meaning that some of the dynamics assessed by the 
models are not only due to the local interaction, but might be constrained by unknown 
sources, i.e., stimuli that are external to the network considered. Similar theoretical 
problems appear in system identification problems concerning the gene regulatory 
networks or protein-protein interaction networks in biological cells or in describing the 
dynamics of autonomous complex swarms subject to environmental cues.  
With these challenges in mind, we developed a mathematical model that enables us to 
account for the existence of both the fractional dynamics and the unknown stimuli, and 
determined the model that best captures the local dynamics under such stimuli. Observe 
that this enhances the analysis of these systems once we have an additional feature (i.e., 
the stimuli) that can be the main driver of a possible abnormal behavior of the complex 
system / network. In addition, these mathematical problems are fundamental for 
designing efficient brain machine interfaces that aim to harvest information from the 
(physical) brain through sensing mechanisms, extract information about the underlying 
processes, and decide/actuate accordingly. 

To make the discussion more concrete, we summarize in equation (1) the mathematical 
model: 

𝛥!𝑥 𝑡 + 1 =  𝐴𝑥 𝑡 +  𝐵𝑢 𝑡  
   𝑦 𝑡 =  𝐶𝑥 𝑡 ,                                                              (1) 

where 𝑥[𝑡] is the state vector characterizing the brain activity dynamics as a collection of 
nodes in the time-varying complex network, 𝛼 is a vector of corresponding fractional-
order coefficients for each node in the network and 𝑦[𝑡] is the observed signal vector. 
The system matrices 𝐴,𝐵 and 𝐶 are spatial-coupling, input and observation matrices, 
respectively. The fractional differential order 𝛼  can be either a real or an integer number 
and thus can encode either the long-range memory (long-range dependence or non-
Markovian) or the short-range memory (Markovian) properties in the dynamical system 
model. Without loss of generality, we assume that the sensors are dedicated to each node, 
and therefore the observation matrix is the identity matrix. However, the proposed 
mathematical framework can also consider other B matrices.  



The brain activity mining and 
interpretation process consists 
of: (i) Collecting the EEG data 
from the dedicated sensors, (ii) 
Estimating the model 
parameters from the EEG data;  
and (iii) Making predictions 
using the estimated model 
parameters. In this setup, the 
monitoring of brain activity is 
obtained through EEG sensing 
around the motor cortex of the 
brain. The second step is non-
trivial due to the presence of 
unknown inputs in equation 
(1). With the assumption of 
known input matrix 𝐵  as it 
depends on the experimental 
realization and fractional-order 
using well-known wavelet 
approach, we proposed an 
inspired Expectation-
Maximization (EM) algorithm to jointly estimate the coupling matrix 𝐴 and the inputs 𝑢. 
This EM-inspired algorithm is summarized as follows: The initial point of the algorithm 
𝐴(!) is estimated by least squares, i.e.,	 

𝐴(!) = arg𝑚𝑖𝑛! 𝑍 − 𝑋𝐴 !
!,                                                  (2) 

where 𝑍 is constructed by expanding the fractional order operator in equation (1) as 
𝑧[𝑘] = 𝛥!𝑥[𝑘] and truncating the expansion to some finite value. The expectation step of 
the algorithm works to estimate the unknown inputs. The unknown unknowns do not act 
on each sensor and are mainly sparse. Using this intuition, we have enforced the Laplace 
prior on the inputs 𝑢 to write the E-step as  

    𝑢 𝑘 =  argmin! 𝑧 𝑘 − 𝐴 ! 𝑥 𝑘 − 𝐵𝑢
!
!
+ 𝜆 𝑢 !,                             (3) 

where 𝜆 is a parameter used to make a trade-off between sparsity and error. The inputs 
are estimated at each time point 𝑘 taken into consideration. With the estimation of inputs 
in the E-step, the remaining part is the update of spatial coupling matrix, which is 
executed in the M-step as follows: 

𝐴(!!!) = argmin! 𝑍 − 𝑋𝐴
!
!,                                                 (4) 

where 𝑍 = 𝑍 − 𝑈𝐵  and 𝑈 = 𝑢 1 ,𝑢 2 ,… ,𝑢 𝐾 !
. We showed that the above-

mentioned algorithm is convergent. It is observed that the convergence is fast for the 
EEG signals we analyzed and even one or two iterations are sufficient for major mean 
squared error reduction. 

 
Figure 1. Time-varying complex networks subject to unknown 
stimuli. Error ratio when making predictions using a fractional-
order dynamical model with and without inputs across 109 
individuals. The fractional-order dynamical model with unknown 
inputs fits the EEG data much better than the case of no inputs. 



We investigated the benefits of the above-mentioned mathematical formalism by 
considering an EEG dataset representing the human brain activity and report the error 
ratio with and without inputs in Figure 1. It can be observed that the error (square root of 
mean squared error) for the case when the unknown inputs are included is less than one-
third of the error when inputs are not considered. Moreover, the parameters of the 
proposed model can be seen as explainable from a system’s perspective, and, 
subsequently, used for classification using machine learning algorithms and/or actuation 
laws determined using control system’s theory. Besides, our proposed system 
identification methods and techniques have computational complexities comparable with 
those currently used in EEG-based brain interfaces, which enable comparable online 
performances. Our proposed mathematical models and algorithm are also valid using 
other invasive and noninvasive technologies. Of note, the classification accuracies as 
reported in the attached manuscript are high even on having less number of training 
samples. 
B) Wild bacterial strains were isolated from freshwater sources in Los Angeles on plates 
selective for bacteria related to Escherichia coli. Isolated strains were screened for 
collective pattern formation at centimeter length scales (se pictures below). 
 

	
	

	
To	 screen	 for	 collective	 pattern	 formation,	
wild	 strains	 were	 placed	 at	 one	 end	 of	 a	
rectangular	 plate	 (see	 left	 hand	 side,	 lanes	
are	 3	 cm	 wide)	 filled	 with	 semi-soft	 agar.	
Over	 time,	 many	 strains	 formed	 complex	
patterns,	 including	 a	 swarm	 ring	 or	 a	 band	
(as	 shown	 in	 the	 middle	 rectangle),	 which	
radiated	 towards	 the	 opposite	 edge	 of	 the	
plate	and	spots	of	high	cell	density	appeared	
(as	shown	on	the	right	hand	side	panel).	

	



	

	
The	emergent	behaviors	of	each	strain	were	measured,	revealing	variability	 in	 the	
collective	pattern	 formation.	We	 focused	on	 two	 types	of	 bacteria,	 seven	different	
isolated	 of	 Enterobacter	 cloacae	 and	 four	 strains	 of	 Aeromonas	 hydrophila.	 The	
velocity	of	the	high	density	band	of	cells	(indicated	with	arrows	on	top	image,	lane	
width	 is	 3	 cm),	 was	 variable	 for	 the	 wild	 isolates.	 Subsequent	 analysis	 of	 these	
strains	attempted	to	connect	this	variability	in	the	collective	dynamics	of	each	strain	
with	variability	in	the	genomic	content	and	the	single-cell	characteristics.	
	
	
	
	
	



	

	
The	genomes	of	our	eleven	isolates	were	sequenced.	Alignment	of	the	16S	rRNA	
sequences	revealed	that	closely	related	strains	had	similar	band	speeds,	suggesting	
that	accumulated	mutation	in	the	genome	modulated	collective	behaviors	such	as	
band	formation	and	dynamics.	
	
	
	



	

Analysis	of	single-cell	swimming	trajectories	within	collective	patterns	in	the	semi-
soft	agar	assay.	Cells	were	 found	to	have	higher	velocity	 in	the	vicinity	of	 the	high	
cell	density	spots	that	formed	on	plates	of	Enterobacter	cloacea.	
	
	



	

	
Characterization of the single-cell swimming characteristics of a wild Enterobacter 
cloacae strain and an Aeromonas hydrophila strain. Despite large difference in swimming 
speeds and tumbling angles, both strains formed similar emergent patterns. 
 
 
 



Re-thinking EEG-based non-invasive brain
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Abstract—Brain interfaces are cyber-physical systems that
aim to harvest information from the (physical) brain through
sensing mechanisms, extract information about the underlying
processes, and decide/actuate accordingly. Nonetheless, the brain
interfaces are still in their infancy, but reaching to their maturity
quickly as several initiatives are released to push forward their
development (e.g., NeuraLink by Elon Musk and ‘typing-by-
brain’ by Facebook). This has motivated us to revisit the design
of EEG-based non-invasive brain interfaces. Specifically, current
methodologies entail a highly skilled neuro-functional approach
and evidence-based a priori knowledge about specific signal
features and their interpretation from a neuro-physiological point
of view. Hereafter, we propose to demystify such approaches,
as we propose to leverage new models that equip us with a
fractal dynamical characterization of the underlying processes.
Subsequently, the parameters of the proposed models can be seen
as explainable from a system’s perspective, and, subsequently,
used for classification using machine learning algorithms and/or
actuation laws determined using control system’s theory. Besides,
the proposed system identification methods and techniques have
computational complexities comparable with those currently used
in EEG-based brain interfaces, which enable comparable online
performances. Furthermore, we foresee that the proposed models
and approaches are also valid using other invasive and non-
invasive technologies. Finally, we illustrate and experimentally
evaluate this approach on real EEG-datasets to assess and
validate the proposed methodology. The classification accuracies
are high even on having less number of training samples.

Index Terms—brain interfaces, spatiotemporal, fractional dy-
namics, unknown inputs, classification, motor prediction

I. INTRODUCTION

We have recently testimony a renewed interest in invasive
and non-invasive brain interfaces. Elon Musk has released
the NeuraLink initiative [1] that aims to develop devices and
mechanisms to interact with the brain in a symbiotic fashion,
thus merging the artificial intelligence with the human brain.
The potential is enormous since it would ideally present a leap
in our understanding of the brain, and an unseen enhancement
of its functionality. Alternatively, Facebook just announced
the ‘Typing-by-Brain’ project [2] that gathered a team of 60
researchers whose target is to be capable of writing 100 words
per minute that contrasts with the state-of-the-art of 0.3 to
0.82 words per minute assuming an average of 5 letters per
word. Towards this goal, Facebook has invested in developing
new non-invasive optical imaging technology that is five times
faster and portable with respect to the one available on the
market and would possess increased spatial and temporal

resolution. Nonetheless, these are just some of the initiatives
among others by some big Silicon Valley players that want to
commercialize brain technologies [3].

Part of the motivation for the ‘hype’ in the use of neurotech-
nologies – both invasive and non-invasive brain interfaces – is
due to their promising application domains [4]: (i) replace,
i.e., the interaction of the brain with a wheelchair or a
prosthetic device to replace a permanent functionality loss, (ii)
restore, i.e., to bring to its normal use some reversible loss of
functionality such as walking after a severe car accident or
limb movement after a stroke; (iii) enhance, i.e., to enable
to outperform in a specific function or task, as for instance
an alert system to drive for long periods of time while
attention up; and (iv) supplement as in equipping one with
extra functionality, as a third arm to be used during surgery.
Notwithstanding, these are just some of the (known) potential
uses of neurotechnology.

Despite the developments and promise of future applica-
tions of brain interfaces (some of which we cannot cur-
rently conceive), we believe that current approaches to both
invasive and non-invasive brain interfaces can greatly ben-
efit from cyber-physical systems (CPS) oriented approaches
and tools to increase their efficacy and resilience. Hereafter,
we propose to focus on non-invasive technology relying on
electroencephalogram (EEG) and revisit it through a CPS
lens. Yet, we believe that the proposed methodology can be
easily applicable to other technologies, e.g., electromagnetic
fields (magnetoencephalography (MEG) [5], and the hemody-
namic responses associated to neural activity (e.g. functional
magnetic resonance imaging (fMRI) [6], [7], and functional
near-infrared spectroscopy (fNIRS) [8]). Nonetheless, these
technologies present several drawbacks compared to EEG,
e.g., cost, scalability, and user comfort, which lead us to focus
on EEG-based technologies. Similar argument can be applied
in the context of non-invasive versus invasive technologies that
require patient surgery.

Traditional approach to EEG neuroadaptive technology con-
sists of proceeding through the following steps [9], [10]: (a)
signal acquisition (in our case, measurement of the EEG time-
series); (b) signal processing (e.g., filtering with respect to
known error sources); (c) feature extraction (i.e., an artificial
construction of the signal that aims to capture quantities of
interest); (d) feature translation (i.e., classification of the signal
according to some plausible neurophysiological hypothesis);

<Preliminary manuscript, camera ready version will be available soon>



EEG channels

EEG time series

feature
extraction

machine learning
classification

predicted
motor task
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Fig. 1: A systematic process flow of the Brain interface. The imagined motor movements of the subject are captured in the
form of EEG time series which are then fed to the computational unit. A fractional-order dynamic model is estimated for the
time series and the model parameters are used as features for machine learning classification. The output of classifier predicts
various motor movements with certain confidence.

and (e) decision making (e.g., provide instructions to the
computer to move a cursor, or a wheelchair to move forward)
– see also Figure 1 for an overview diagram.

In this paper, we propose to merge steps (b) and (c)
motivated by the fact that these often accounts for spatial or
temporal, and are only artificially combined in a later phase
of the pipeline, i.e., at step (d) of feature translation. Thus,
we argue that the previous approach discards several spatial-
temporal properties that can be weighted for signal processing
and feature extraction phases. In other words, current EEG
brain interfaces require one to have an understanding of
the different regions of the brain responsible, for instance,
for motor or visual actions, as well as artificial frequency
bands that are believed to be more significant for a specific
action (also known as evidence-based). Besides, one needs to
understand and anticipate the most likely causes noise/artifacts
in the EEG data collected and filter out entire frequency bands,
which possibly compromises phenomena of interest not being
available for post-processing. Instead, we propose a modeling
capability to enable the modeling of long-range memory time-
series that at the same time accounts for unknown stimuli, e.g.,
artifacts or inter-region communication.

A. Related Work and Novel Contributions

By being able to properly model EEG time-series with mod-
els that account for realistic setups, brain interfaces methods,
which are mainly detectors can be transformed into decoders.
In other words, we do not want to solely look for the existence
of a peak of activity in a given band that is believed to be
associated with a specific action, but we want to decompose
the signal into different features, i.e., parameters of our model,
that are interpretable. Thus, allowing us to understand how
different regions communicate during a specific action/task,

as well as the external stimuli driving the process and the
different time-scales at which the underlying process occurs.
In engineering, this will enable us to depart from a skill
dependent situation to general context analysis, which will
enhance the resilience of the approaches for practical non-
surgical brain interfaces. Besides, it will equip bioengineers,
neuroscientists, and physicians with an exploratory tool to
pursue new technologies for neuro-related diagnostics and
treatments, as well as neuro-enhancement.

The proposed approach departs from those available in
the literature, see [4], [9], [10] and references therein. In
fact, to the best of authors’ knowledge, in the context of
noninvasive EEG-based technologies, [11] is the only existing
work that explores fractional-order models in the context of
single-channel analysis, which contrasts with the spatiotem-
poral modeled leveraged in this paper that copes with multi-
channel analysis. Furthermore, the methodology presented in
this paper also accommodate unknown stimuli [12]. For which
efficient algorithms are proposed and leveraged hereafter to
simultaneously retrieve the best model that conforms with
unknown stimuli, and separating the unknown stimuli from
the time-series associated with brain activity. Our methods
are as computationally efficient and stable as least-squares
and spectral analysis methods used in a spatial and temporal
analysis, respectively; thus, suitable for online implementation
in nonsurgical brain interfaces.

The main contributions of the present paper are those of
leveraging some of the recently proposed methods to de-
velop new modeling capabilities for the EEG based neuro-
wearables that are capable of enhancing the signal quality
and decision-making. Furthermore, the parametric description
of these models provides us with new features that are
biologically motivated and easier to translate in the context
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Fig. 2: Description of the brain functional regions and their corresponding location with respect to the EEG sensor cap. [image
credits] Brain-Computer Interfacing at the Bernstein Focus: Neurotechnology

of brain function associated with a signal characterization,
and free of signal artifacts. Thus, making the brain-related
activity interpretable, which leads to resilient and functional
nonsurgical brain interfaces.

B. Paper Organization

The remaining of the paper is organized as follows. Sec-
tion II introduces the model considered in this paper and the
main problem studied in this manuscript. Also we will see
the description of the employed method for feature selection
and then classification techniques. In Section III, we present
an elaborated study on the datasets taken from the BCI
competition [13].

II. RE-THINKING EEG-BASED NON-INVASIVE
BRAIN INTERFACES

Brain interfaces aim to address the following problem.
Is it possible to classify a specific cognitive state, e.g., motor

task or its imagination, by using measurements collected with
a specific sensing technology that harvest information about
brain activity?

In the current manuscript, we want to revisit this problem in
the context of brain-computer interfaces (BCI), when dealing
with EEG-based noninvasive brain interfaces. Towards this
goal, we review the adopted procedure for solving this problem
(see Fig. 1 for an overview), and proposed a systems’ perspec-
tive that enables to enhance the BCI reliability and resilience.
Therefore, in Section II-A we provide a brief overview of the
EEG-based technology and the connection with the brain-
areas’ function associated with studies conducted in the past.
Next, in Section II-B, we introduce the spatiotemporal frac-
tional model under unknown stimuli, which will be the core
of the proposed approach in this manuscript to retrieve new
features for classification, and, subsequently, enhancing brain
interfaces capabilities. In Section II-C, we describe how to de-
termine the system model’s parameters, and in Section II-D we
describe how these can then be interpreted for classification.

A. EEG-based Technology for Brain Interfaces: a brief
overview

EEG enables the electrophysiological monitoring of space-
averaged synaptic source activity from millions of neurons
occurring at the neocortex level. EEG has a poor spatial
resolution but high temporal resolution, since the electrical
activity generated at the ensemble of neurons level arrives at
the recording sites within milliseconds. The electrodes (i.e.,
sensor) are placed over an area of the brain of interest,
being the most common the visual, motor, sensory, and pre-
frontal cortices. Usually, they follow standard montages – the
International 10-20 system is depicted in Fig. 2.

Most of the activity captured by the EEG electrodes is due to
the interactions between inhibitory interneurons and excitatory
pyramidal cells, which produces rhythmic fluctuations com-
monly referred to as oscilations. The mechanisms that generate
those oscillations is not yet completely understood, but it has
been already identified that some ’natural oscillations’ provide
evidence of activity being ’processed’ in certain regions of the
brain at certain ’frequencies.’ Therefore, oscillatory behavior
of human brain is often partitioned in bands (covering a wide
range of frequencies decaying as 1{f in power): (i) δ-band
(0.5-3Hz); (ii) θ-band (3.5-7Hz); (iii) α-band (8-13Hz); (iv) β-
band (14-30Hz); and (v) γ-band (30-70Hz). Furthermore, sev-
eral there has been some evidence that activity in certain bands
is associated with sensory registration, perception, movement
and cognitive processes related to attention, learning and
memory [14]–[16]. Notwithstanding, such associations are
often made using correlation and/or coherence techniques that
only capture relationships between specific channels but are
not able to assess the causality between signals that enables
forecasting on the signal evolution, captured by a model-based
representation as we propose to do hereafter.

Different changes in the signals across different bands are
also used to interpret the event-related potentials (ERPs) in the
EEG signals, i.e., variations due to specific events – see [4] for
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detailed analysis. In the context of sensory-motor data used in
the current manuscript to validate the proposed methodology,
sensorimotor rhythms (SMRs) are often considered. These
represent oscillations that are recorded over the posterior
frontal and anterior parietal areas of the brain, i.e., over the
sensorimotor cortices (see Fig. 2). SMRs occur mainly in the
α-band (for sensors located on the top of the motor cortices),
and on beta and lower gamma for those on the sensorimotor
cortices [17]. Consequently, these have been used as a default
feature for classification of motor-related execution and only
the imagination of performing a motor task. Notwithstanding,
the spatiotemporal modeling is not simultaneously captured
through direct state-space modeling that enables the system’s
understanding of the dynamics of the underlying process, and,
subsequently, a new set of features that can be used to improve
feature translation, i.e., classification.

B. Spatiotemporal Fractional Model under Unknown Stimuli

A multitude of complex systems exhibits long-range
(non-local) properties, interactions and/or dependencies (e.g.,
power-law decays in memories). Example of such systems
includes Hamiltonian systems, where memory is the result
of stickiness of trajectories in time to the islands of regular
motion [18]. Alternatively, it has been rigorously confirmed
that viscoelastic properties are typical for a wide variety of
biological entities like stem cells, liver, pancreas, heart valve,
brain, muscles [18]–[26], suggesting that memories of these
systems obey the power law distributions. These dynamical
systems can be characterized by the well-established math-
ematical theory of fractional calculus [27], and the corre-
sponding systems could be described by fractional differential
equations [28]–[32]. However, it is until recently that fractional
order system (FOS) starts to find its strong position in a
wide spectrum of applications in different domains due to
the availability of computing and data acquisition methods
to evaluate its efficacy in terms of capturing the underlying
system states evolution.

Subsequently, we consider a linear discrete time fractional-
order dynamical model under unknown stimuli (i.e., inputs)
described as follows:

∆αxrk ` 1s “ Axrks `Burks

yrks “ Cxrks, (1)

where x P Rn is the state, u P Rp is the unknown input and
y P Rn is the output vector. Also, we can describe the system
by its matrices tuple pα,A,B,Cq of appropriate dimensions.
The coupling matrix A represents the spatial coupling between
the states across time while the input coupling matrix B
determines how inputs are affecting the states. In what follows,
we assume that the input size is always strictly less than
the size of state vector, i.e., p ă n. The difference between
a classic linear time-invariant and the above model is the
inclusion of fractional-order derivative whose expansion and
discretization [33] for any ith state p1 ď i ď nq can be written

as

∆αixirks “
k

ÿ

j“0

ψpαi, jqxirk ´ js, (2)

where αi is the fractional order corresponding to the ith state
and ψpαi, jq “

Γpj´αiq

Γp´αiqΓpj`1q with Γp.q denoting the gamma
function.

Having defined the system model, the system identification,
i.e., estimation of model parameters, from the given data is an
important step. It becomes nontrivial when we have unknown
inputs since one has to be able to differentiate which part of
the evolution of the system is due to its intrinsic dynamics and
what is due to the unknown inputs. Subsequently, the analysis
part that we need to address is that of system identification
from the data, as described next.

C. Data driven system identification

The problem consists of estimating α, A and inputs
turksut`T´2

t from the given limited observations yrks, k “
rt, t ` T ´ 1s, which due to the dedicated nature of sensing
mechanism is same as xrks and under the assumption that the
input matrix B is known. The realization of B can be applica-
tion dependent and is computed separately using experimental
data – as we explore later in the case study, see Section III. For
the simplicity of notation, let us denote zrks “ ∆αxrk ` 1s
with k chosen appropriately. The pre-factors in the summation
in (2) grows as ψpαi, jq „ Opj´αi´1q and, therefore, for
the purpose of computational ease we would be limiting the
summation in (2) to J values, where J ą 0 is sufficiently
large. Therefore, zirks can be written as

zirks “
J´1
ÿ

j“0

ψpαi, jqxrk ` 1´ js, (3)

with the assumption that xrks, urks “ 0 for k ď t´ 1. Using
the above introduced notations and the model definition in (1),
the given observations can be written as

zrks “ Axrks `Burks ` erks, (4)

where e „ N p0,Σq is assumed to be Gaussian noise indepen-
dent across space and time. For simplicity we would assume
that Σ “ σ2I . Also, let us denote the system matrices as
A “ ra1, a2, . . . , ans

T and B “ rb1, b2, . . . , bnsT . The vertical
concatenated states and inputs during an arbitrary window of
time as Xrt´1,t`T´2s “ rxrt ´ 1s, xrts, . . . , xrt ` T ´ 2ssT ,
Urt´1,t`T´2s “ rurt´1s, urts, . . . , urt`T´2ssT respectively,
and for any ith state we have Zi,rt´1,t`T´2s “ rzirt ´
1s, zirts, . . . , zirt ` T ´ 2ssT . For the sake of brevity we
would be dropping the time horizon subscript from the above
matrices as it is clear from the context.

Since the problem of joint estimation of the different
parameters is highly nonlinear, we proceed as follows: (i) we
estimate the fractional order α using the wavelet technique
described in [34]; and (ii) with α known, the z in equation
(3) can be computed under the additional assumption that
the system matrix B is known. Therefore, the problem now
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reduces to estimate A and the inputs turksut`T´2
t . Towards

this goal, we borrow the expectation-maximization (EM) [35]
like algorithm from [12]. Briefly, the EM algorithm is used for
maximum likelihood estimation (MLE) of parameters subject
to hidden variables. Intuitively, in our case, in Algorithm 1,
we estimate A in the presence of hidden variables or unknown
unknowns turksut`T´2

t . Therefore, the ‘E-step’ is performed
to average out the effects of unknown unknowns and obtain
an estimate of u, where due to the diversity of solutions,
we control the sparsity of the inputs (using the parameter
λ1). Subsequently, the ‘M-step’ can then accomplish MLE
estimation to obtain an estimate of A.

It was shown theoretically in [12] that the algorithm is
convergent in the likelihood sense. It should also be noted that
the EM algorithm can converge to saddle points as exemplified
in [35]. The Algorithm 1 being iterative is crucially dependent
on the initial condition for the convergence. We will see in the
Section III that the convergence is very fast making it suitable
for online estimation of parameters.

Algorithm 1: EM algorithm
Input: xrks, k P rt, t` T ´ 1s and B
Output: A and turksut`T´2

t

Initialize compute α using [34] and then zrks. For l “ 0,
initialize Aplq as

a
plq
i “ arg min

a
||Zi ´Xa||

2
2

repeat
(i) ‘E-step’: For k P rt, t` T ´ 2s obtain urks as

urks “ arg min
u
||zrks ´Aplqxrks ´Bu||22 ` λ

1||u||1,

where λ1 “ 2σ2λ;
(ii) ‘M-step’:
obtain Apl`1q “ ra

pl`1q
1 , a

pl`1q
2 , . . . , a

pl`1q
n sT where

a
pl`1q
i “ arg min

a
||Z̃i ´Xa||

2
2,

and Z̃i “ Zi ´ Ubi;
lÐ l ` 1;

until until converge;

D. Feature Translation (Classification)

The EEG signals directly from the sensors although carrying
vital information may not be directly useful for making the
predictions. However, by representing the signals in terms of
parametric model pα,Aq and the unknown signals as we did
in the last section, we can gain better insights. The parameters
of the model being representative of the original signal itself
can be used to make a concise differentiation.

The A matrix represents how strong is the particular signal
and how much it is affecting/being affected by the other signals
that are considered together. While performing or imagining
particular motor tasks, certain regions of the brain gets more
activated than others. Therefore, the columns of A which

represent the coefficients of the strength of a signal affecting
other signals can be used as a feature for classification of motor
tasks. In this work, we will be considering the machine learn-
ing based classification techniques like logistic regression and
Support Vector Machines (SVM) [36]. The choice of kernels
would vary from simple ‘linear’ to radial basis function (RBF),
i.e., kpxi, xjq “ e´γpxi´xjq

2

. The value of parameters of the
classifier and possibly of the kernels would be determined
using cross-validation. The range of parameters in the cross-
validation would be from 2´5, . . . , 215 for γ and 2´15, . . . , 23

for C “ 1{ λ, both in the logarithmic scale, where λ is the
regularization parameter which appears in optimization cost of
the classifiers [36].

III. CASE STUDY

We will now illustrate the usefulness of the fractional-order
dynamic model with unknown inputs in the context of classi-
fication for Brain Computer Interface (BCI). We have consid-
ered two datasets from the BCI competition [13]. The datasets
were selected on the priority of larger number of EEG channels
and number of trials for training. The available data is split
into the ratio of 60% and 40% for the purpose of training and
testing, respectively.

A. Dataset-I

We consider for validation the dataset labeled ‘dataset IVa’
from BCI Competition-III [37]. The recording was made using
BrainAmp amplifiers and a 128 channel electrode cap and out
of which 118 channels were used. The signals were band-
pass filtered between 0.05 and 200 Hz and then digitized at
1000 Hz. For the purpose of this study we have used the
downsampled version at 100 Hz. The dataset for subject ID
‘al’ is considered, and it contains 280 trials. The subject was

T 7 C 5 C 1C 3 C Z C 2 C 4 C 6 T 8

used sensors
sensors as
features

Fig. 3: A description of the sensor distribution for the mea-
surement of EEG. The channel labels for the selected sensors
are shown for dataset-I.
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provided a visual cue, and immediately after asked to imagine
two motor tasks: (R) right hand, and (F) right foot.

1) Sensor Selection and Modeling: To avoid the curse-of-
dimensionality, instead of considering 118 sensors available,
which implies the use of 118 ˆ 118 dynamics entries for
classification, only a subset of 9 sensors was considered.
Specifically, only the sensors indicated in Fig. 3 are selected
on the basis that only hand and feet movements need to be
predicted, and only a 9ˆ 9 dynamics matrix and 9 fractional
order coefficents are required for modeling the fractional order
system. Besides, these sensors were selected because they are
close to the region of the brain known to be associated with
motor actions.

2) System Identification and Validation: The model param-
eters pα,Aq and the unknown inputs are estimated by using
the Algorithm 1. As mentioned before, the performance of the
algorithm being iterative is dependent on the choice of the
initial conditions. For the current case, we have observed that
the algorithm converges very fast, and even a single iteration
is enough. This shows that the choice of initial conditions
are fairly good. The one step and five step prediction of the
estimated model is shown in Fig. 4. It can be seen that the
predicted values for one step very closely follow the actual
values. There are some differences between the actual and
predicted values for five step prediction.
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Fig. 4: Comparison of predicted EEG state for the channel T7

using fractional-order dynamical model with unknown inputs.
The one step and five step predictions are shown in (a) and
(b) respectively.

3) Discussion of the results: The most popular features
used in the motor-imagery based BCI classification relies on
exploiting the spectral information. The features used are the
band-power which quantifies the energy of the EEG signals
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Fig. 5: Magnitude spectrum of the signal recorded by channel
T7 with and without unknown inputs.

in certain spectrum bands [38]–[40]. The motor cortex of the
brain is known to be affecting the energy in the bands namely,
α and β as discussed in the Section II. While it happens
that an unwanted signal energy is captured in these bands
as well while performing the experiments, for example neck
movement, other muscle activities etc. The filtering of these
so called ‘unwanted’ components from the original signal is
a challenging task using the spectral techniques as they often
share the same band.

We have taken a different approach to deal with these
unknown unknowns in Section II. The magnitude spectrum
of the original EEG signal and on removing the estimated
unknown inputs is shown in Fig. 5. It should be observed that
the original signal and the signal upon removing the unknown
inputs have significant energy in the α and β bands. The
unknown inputs behave somewhat like white noise which is
evident from their Gaussian probability distribution (PDF) as
shown in Fig. 6. The inputs are not mean zero but their PDF
is centered around a mean value of approximately 58.

The model parameters pα,Aq are jointly estimated with
the unknown inputs using Algorithm 1, therefore the effect of
the inputs is inherently taken care of in the parameters. The
structure of matrix A for two different labels is shown in Fig. 7.
We will be using the sensors C3 and C1 which are indexed
as 3 and 4, respectively in the Fig. 7. We can observe that
the columns corresponding to these sensors are having varied
activity and hence deem to be fair candidates for the features
to be used in classification. Therefore, the total number of
features are going to be 2ˆ 9 “ 18.

B. Dataset-II

A 118 channel EEG data from BCI Competition-III, labeled
as ‘dataset IVb’ is taken [37]. The data acquisition technique
and sampling frequencies are same as in dataset of the previous
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Fig. 6: Probability density function of the unknown inputs
estimated from the signal recorded by channel T7.
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Fig. 7: Estimated A matrix of size 9ˆ9 for the dataset-I with
marked columns corresponding to the sensor index 3 and 4
used for classification.

subsection. The total number of labeled trials are 210. The
subjects upon provided visual cues were asked to imagine two
motor tasks, namely (L) left hand and (F) right foot.

1) Sensor Selection and Modeling: Due to the small num-
ber of training examples, we would again resort to be selecting
a subset of sensors for the model estimation as we did for the
dataset-I in the previous section. Since the motor tasks were
left hand and feet, therefore we have selected the sensors in the
right half of the brain and close to the region which is known
to be associated with hand and feet movements as shown in
Fig. 8. We will see in the final part of this section that selecting
sensors based on such analogy helps not only in reducing the
number of features, but also to gain better and meaningful
results.

2) System Identification and Validation: After performing
the estimation of the model pα,Aq and the unknown inputs
using the subset of sensors, we can see the similar performance
of the model on dataset-II as was in dataset-I. The one step and
five step predictions are shown in Fig. 9. The model prediction
follows closely the original signal.

3) Discussion of the results: The spectrum of the original
EEG signal at channel CFC2 and its version with unknown
inputs removed are shown in Fig. 10. The spectrum shows
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Fig. 8: A description of the sensor distribution for the mea-
surement of EEG. The channel labels for the selected sensors
are shown for dataset-II.
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Fig. 9: Comparison of predicted EEG state for the channel
CFC2 using fractional-order dynamical model with unknown
inputs. The one step and five step predictions are shown in (a)
and (b) respectively.

peaks in the α and β bands. We can again make the similar
observation as before that both of the signals share the same
band and hence making it difficult to remove the effects of
the unwanted inputs. The unknown inputs can be viewed as
white noise and the PDF can be seen as Gaussian distributed
with mean centered at around 48.
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Fig. 10: Magnitude spectrum of the signal recorded by channel
CFC2 with and without unknown inputs.
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Fig. 11: Probability density function of the unknown inputs
estimated from the signal recorded by channel CFC2.

The estimated A matrix from Algorithm 1 is shown in
Fig. 12 for two different labels. Out of all 13 sensors, the
sensors CCP2 and CCP4 which are indexed as 10 and 11
in the matrix have striking different activity. The columns
corresponding to these two sensors seem good choice for being
the features for classification. Therefore, the total number of
features are going to be 2ˆ13 “ 26 for this dataset. Next, we
are going to discuss the classification accuracy for both the
datasets.

C. Classification Performance

Finally, the performance of the classifier using the features
explained for both the datasets can be seen in Fig. 13. The
classifiers are arranged in the order of complexity from left
to right with logistic regression (lR) and linear kernel being
simplest and SVM with RBF kernel being most complex. We
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Fig. 12: Estimated A matrix of size 13ˆ 13 for the dataset-II
with marked columns corresponding to the sensor index 10
and 11 used for classification.
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Fig. 13: Testing and training accuracies for various classifiers
arranged in the order of classification model complexity from
left to right. The estimated accuracies for dataset-I and dataset-
II are shown in (a) and (b) respectively.

can see the classic machine learning divergence curve for
both the datasets. The accuracy for training data increases
when increasing the classification model complexity while it
reduces for the testing data. This is intuitive because a complex
classification model would try to better classify the training
data. But the performance of the test data would reduce due
to overfitting upon using the complex models. We have very
few training examples to build the classifier and hence such
trend is expected. The performance of the classifiers for both
the datasets are fairly high which reflects the strength of the

<Preliminary manuscript, camera ready version will be available soon>



estimated features. We can see a 87.6% test accuracy for
dataset-I and 85.7% for dataset-II. While these accuracies
depend a lot on the cross-validation numbers and other factors
like choice of classifier which can be better tuned to get higher
numbers.

For both the datasets we have seen that the proposed
methodology efficiently extracts the features which can be
used to differentiate the imagined motor movements. By
implicitly removing the effects of the unwanted stimuli, the
coefficients of the coupling matrix A are shown to be sufficient
for discriminating relation between various EEG signals which
are indicative of the motor movements. The testing accuracies
are high which indicate the good quality of the extracted
features.

IV. CONCLUSION

We have revisited the EEG-based noninvasive brain in-
terfaces feature extraction and translation from a cyber-
physical systems’ lens. Specifically, we leveraged spatiotem-
poral fractional-order models that cope with the unknown
inputs. The fractional-order models provide us the dynamic
coupling changes that rule the EEG data collected from the
different EEG sensors, and the fractional-order exponents
capture the long-term memory of the process. Subsequently,
unknown stimuli can be determined as the external input that
least conforms with the fractional-order model. By doing so,
we can filter-out from the brain EEG signals the unknown
inputs, that might be originated in deeper brain structures
as the result of the structural connectivity of the brain that
crisscrosses different regions, or due to artifacts originated
in the muscles (e.g., eye blinking or head movement). As a
consequence, the filtered signal does not need to annihilate an
entire band in the frequency domain, thus keeping information
about some frequency regions of the signal that would be
otherwise lost.

We have shown how the different features obtained from
the proposed model can be used towards rethinking the EEG-
based noninvasive interfaces. In particular, two datasets used
in BCI competitions were used to validate the performance
of the methodology introduced in this manuscript, which is
compatible with some of the state-of-the-art performances
while requiring a relatively small number of training points.
We believe that the proposed methodology can be used
within the context of different neurophysiological processes
and corresponding sensing technologies. Future research will
focus on leveraging additional information from the unknown
inputs retrieved to anticipate specific artifacts and enable the
deployment of neuro-wearables in the context of real-life
scenarios. Furthermore, the presented methodology can be
used as an exploratory tool by neuroscientists and physicians,
by testing input and output responses and tracking their impact
in the unknown inputs retrieved by the algorithm proposed;
in other words, one will be able to systematically identify the
origin and dynamics of stimulus across space and time. Finally,
it would be interesting to explore the proposed approach in the
closed-loop context, where the present models would benefit

from control-like strategies to enhance the brain towards cer-
tain tasks or attenuate side effects of certain neurodegenerative
diseases or disorders.
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Project Outline 
q Pattern formation diversity in wild microbial societies 

q  Experimental and mathematical analysis methodology 
q  Skeleton for a theory of complex collectives 

q Noise and its consequences on collective behavior 
q  Computational quantification of pattern formation sensitivity to noise 
q  Experimental validation  

q  Impact of single-cell heterogeneity on pattern formation 
q  Experimental quantification of single cell behavior within cellular collectives  
q  Mathematical quantification of information transfer in microbial societies 
q  Free-energy landscape description of collective biological systems 

q Robustness of pattern formation 
q Predict the outcome of two systems of pattern forming cells 
q  Implications for a theory of complex collectives 

2 



Pattern Formation Diversity in Microbial Society 

q Microscopic computation /                                                               
learning, storage (multiscale                                                
retainment of information) and                                                        
communication lead to complex                                                           
macroscopic pattern formation 
q  Single cell computation: environmental sensing + internal processing for decision 

making (expressing genes, moving faster/slower, compete or collaborate) 
q  Memory storage: at single cell and at population level 
q  Communication: convey information for self-organization and emergence 
q  E.coli form elaborate patterns of rings and spots on a soft agar plate 

q Factors influencing pattern formation 
q  Chemotaxis, amino acid-mediated signaling (communication protocols) 
q  Nutrient depletion (computational resources / constraints) 

3 
How to classify the pattern diversity formed by natural coliform isolates? 

Berg, PNAS, 1996. 



Diversity of Collective Behaviors in the Wild 
q Many wild bacteria were isolated from LA fresh water samples 

and screened for collective pattern formation. 
 

4 



Isolates form similar but distinct dynamic patterns 
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What differences at the genomic and microscopic level 
generate variability in emergent behavior? 

6 

q  The band forms as a result of 
chemotaxis and cell-cell signaling. 

Direction 
of wave 
propagation 

Cells 
Food 
Cell-produced 
chemoattractant 



Multiple stages of pattern formation 
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Microbial “races” revealed variability of the band speed 

8 



The velocity of the swarm ring was variable, even 
within closely related strains 

9 



Strain relatedness correlates with similarity in band speed 

10 

16S	rRNA	phylogenic	tree	



Genomic diversity modulates pattern formation 

11 HS Girgis, Y Liu, WS Ryu, and Saeed Tavazoie, A Comprehensive Genetic Characterization of Bacterial Motility, PLoS Genetics, 2007. 

q  Multiple genes contribute to patterning, even those not 
obviously associated with motility (*). 

q  We have sequenced the genomes of 25 isolates to identify 
genomic changes that fine tune collective behavior. 

q  Thus far, all known pattern formation genes are present in each 
strain, although gene and promoter sequences are variable. 



Measure the single-cell motility characteristics of each strain 

12 

30 µm 

q  At the microscopic level, how do the 
swimming trajectories of each strain 
and species differ? 

q  Will differences in the behavior of 
individual agents predict the 
variability of the emergent patterns 
formed at larger scales? 



The two species that form bands have very different single-cell 
swimming behavior.  

13 

Enterobacter cloacae SLE2 Aeromonas hydrophila SLA2 



No strong correlations between the band speed and single-cell 
swimming characteristics 
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No strong correlations between the band speed and single-cell 
swimming characteristics 
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q  Band formation can be reproduced in 
continuum based models. 

q  Also pursuing agent based modeling 
that incorporates experimental 
measurements of single-cell behavior 
and its variability. 



Hybrid patterns formed by combining multiple strains 

16 

Fast 
Band 

Slow 
Band 

SLE6 SLE2 

1:1 
ratio 

hours 
1 cm 

SLE6 
SLE2+SLE6 1:3 
SLE2+SLE6 1:1 
SLE2+SLE6 3:1 
SLE2 



MC Exhibit Complex Spatio-Temporal Patterns 
q Bacteria aggregate patterns encode cooperative, competitive  

and adaptive interactions in uncertain environments 
q  Microscopic information is hard                                                                        

to obtain, scarce or inaccurate  
q  Environment is continuously evolving 
q  Difficult to track and separate various                                                         

effects produced by interactions 
q Macro-scopic observations 

q  Band expansion (after 14h) 
q  Spot formation (after 20-30h) 
q  Spot dissipation (after 50h) 

q Complex signatures 
q  Between band expansion, spot                                                                   

aggregation and dissipation 17 

Band 
expansion 

Spot 
formation 

Spot 
dissipation 



Natural vs. Artificial Patterns 

q Hard to quantify what language collective microbial 
communities speak? 

18 



Mono-fractals vs. Multi-fractals (I) 
q Mono-fractals 

q Patterns with self-similar statistical                                                       
properties characterized by single                                                                
fractal dimension across all scales 

q Multi-fractals 
q Patterns with self-similar                                                             

statistical properties characterized                                                              
by different fractal dimensions                                                                
across multiple scales  
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Mono-fractals vs. Multi-fractals (II) 

20 

q Mono-fractal Cantor set –                                                             
inspired aggregation                                                           
pattern [1 0 1] 

q Multi-fractal Cantor set –                                                          
inspired aggregation                                                                      
pattern [1 0 2] 

 
q Generalized dimension Dq 

q Detects deviations from perfect order 
q Quantifies the mean of the spatio-

temporal distributions of the support (D0), 
information dimension (D1), correlation 
dimension (D2), rare events (D-∞) 



Mono-fractals vs. Multi-fractals (III) 

21 

q Multi-fractal spectrum (MFS) f (α) 
q  Single point for mono-fractals 
q  Wideness of multi-fractal spectrum measures                                                                 

the variability in properties across regions 
q  αmin and αmax correspond to highest and                                                             

smallest probabilities 
q Patterns with zero probability (lacunar regions)                                                        

have MFSs with lower peak than denser patterns 
q  Peak shows how much the fractal covers the support   



Mono-fractals vs. Multi-fractals (IV) 

22 

q Multi-fractal spectrum f (α) (con’t)   
q Patterns with multiple scale dependent                                                     

regions with similar properties have a                                                              
multi-fractal spectrum f (α) greater                                                               
than zero 

q  [1 1 2] consists of repeated exact motifs                                                                       
hence its  f (αmax) will be greater than zero 



Artificial Multi-Fractal Patterns: Examples 
q  Assign 1 to the support interval 
q  Split in two each interval and follow weights (0.3 for left & 0.7 for right) 
q  Repeat step two indefinitely 
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Implications 

24 

q Controlling degree of order (multi-fractality)                                  
in an artificial pattern formation system 

q Consider three pattern aggregation steps where 
q Values in each sector represent the probability of an                      

aggregation spot formation 
q Variation in probability                                                                                 

of different sectors                                                                               
encodes the pattern                                                                       
heterogeneity (multi-                                                                           
fractality) or departure                                                                                
from mono-fractality 



Emergence: Definition 
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Rare patterns Common patterns q Emergence  
q Encodes a phase transition                                                                            

(system level property) and                                                                  
hysteresis phenomena 

q Quantifies amount of information                                                                    
generated in the whole by                                                              
interactions 

q Quantifies  
q Direction of energy transfer 
q How much the distribution                                                                     

characterizing the system changes over time 
q Degree of emergence exhibited by microbial communities across multiple 

spatio-temporal scales 

E =
∂D q( )
∂t

dq∫



Fast drop Slow decrease 

Emergence: Analysis 
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q Emergence of aggregation spots represents the adaptation of 
Enterobacter cloacae to scarce food resources 

q Emergence shows  
q A fast drop at the beginning of                                                                         

the investigation period and  
q A slow decrease afterwards at                                                                  

longer times 
q Minimum energy principle  

q  If a system transitions to an                                                                 
equilibrium state while                                                                          
conserving the entropy, then                                                                           
the system minimizes its                                                                                            
internal energy 



Self-organization: Definition 
q Self-organization quantifies  

q How close a system is to the perfect order or self-similar distribution 
across all regions and observation scales 

q Ability of a swarm to converge to                                                               
an ordered state solely through                                                               
local interactions 

q Measures the deviation of                                                                           
multi-fractal spectrum from a                                                                        
peak α0 (representing order) 

q Zero emergence implies degree of                                                                      
self-organization does not change 
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S = − α0 −α( )2 f α( )dα∫



Self-Organization: Analysis (I) 
q Self-organization  

q  Increases towards the end of experiment 
q Suggests that spots formed later in time followed the rule impose by early 

spots and not formed at a random 

28 



Self-Organization: Analysis (II) 
q Degree of self-organization in experiment 3 fluctuates more 

since the right part of the spectrum exhibits higher variation 
compared to the other experiments 
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More on Emergence Analysis (I) 
q Causal emergence changes the dynamics complexity 

q Bidirectional influence represents a feedback loop that impacts the 
dynamics of the system by either  

q  increasing the complexity (chaotic behavior), or 
q  stabilizing the dynamics (restricted behavior) 

30 

Cell	ProperGes	

System	properGes	

Cell	ProperGes	

System	properGes	

bidirectional 
influence 

unidirectional 
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Causal emergence Non-causal emergence 



More on Emergence Analysis (II) 
q  Is bacteria aggregation a causal or a non-causal process? 

31 

Investigate swimming behavior 
 

in the vicinity and farther away from aggregation spots 



Emergence Influences Dynamics 
q Near the spot the swimming trajectories become more 

concentrated around their initial position 

32 

Longer	swimming	runs	

Shorter	swimming	runs	



More on Emergence Analysis (III) 
q Bacteria cells swim faster in the vicinity of aggregation spot 

despite high cell concentration and high chance of collision 
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More on Emergence Analysis (IV) 

q No difference in swimming behavior for regions between the 
aggregation spots 

q Aggregation spots                                                                      
form as result of                                                                        
causal emergence 
q Closer to aggregation                                                                                 

spot the trajectories                                                                                
are more interrupted                                                                               
and concentrated                                                                                     
around a point 

q Bacteria speed increases                                                                          
closer to the spot despite high cell density and chance of collision 

q No such behavior is observed for the regions in the middle between two 
neighboring spots 
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Hysteresis Behavior 
q Enterobacter cloacae communities exhibit a hysteresis 

behavior when transitioning between aggregate and non-
aggregate states 
q Hysteresis defines the                                                                            

dependence of a system                                                                                
state on its history (memory) 

q Spot formation  
q  Transition from non-aggregate                                                                                     

state to aggregate state has a                                                                                       
speed of approximately 49 spots/h  

q Spot dissipation 
q  Transition from aggregate to                                                                                         

non-aggregate state has a speed                                                                                         
of approximately 41 spots/h 
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Conclusions and Future Work 

q Current work 
q Collect and record pattern formation in natural coliforms 
q Provide a non-Euclidean geometric characterization of patterns formed by 

natural isolates 
q Record genomic diversity and its impact on pattern formation 
q Test experimental hints through a computational model of microbial 

communities 
q Provide a statistical physics and information theory framework for 

quantifying computation and communication complexity 
q Quantify impact of single-cell heterogeneity on pattern formation 
q Quantify the robustness of pattern formation in mixed cell populations     
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Thank you!  
More info at http://ceng.usc.edu/cps/ 
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